USING BERNOULLI'S

CONSTANT
DESIGN, BUILD, \& TEST PAPER AIRPLANES

Flight model \#12 140

Mass of the Plane = \qquad
Longest hangtime $=\ldots \quad 4.8 _$seconds \quad Longest distance flew $=$ _ 23.5_ meters

$$
=\text { density }=\frac{\text { mass }}{\text { volume }}=\frac{}{58.17 \mathrm{~cm}^{3}}=
$$

Here is your formila. Plug in your numbers for the best plane

$\boldsymbol{V}_{\text {final }}=--\frac{\mathbf{2 3 . 5} \text { meters }}{--------=-}$| 4.8 seconds |
| :--- |

Convert_$v_{f_{-}}$to_miles_per_hour: $\left(v_{f} \times 2.23=m p h\right)$
\qquad
Bernoulli's_Constant $=P+\frac{1}{2} p v^{2}+p g h$
YOU must include the formula and the numbers. Units are not needed for THIS problem only

Bernoulli's Constant is =

\qquad

$$
P=14.7
$$

$$
1 / 2=0.5
$$

$$
D=
$$

$$
V=
$$

$$
\mathrm{g}=
$$

h =

NAME:
Which 12 weeks? 1
Minimum passing flight is one plane MUST clear 8.Ometers once You MUST Highlight your BEST longest flight

NAME:
Which 12 weeks? 1
23
Minimum passing flight is one plane MUST clear 8.Ometers once You MUST Highlight your BEST longest flight

NAME: What
design was
different

Which 12 weeks? 1
23

Flight \#		Distance Traveled (meters)	Time of Flight (seconds)	Observations Describe what happened to the plane during flight. Directions, flight, etc...	Velocity (Distance - Time)	$\begin{gathered} \text { Velocity } \\ (\mathrm{mph}) \\ (\operatorname{vf} \times 2.23) \end{gathered}$
$\text { DAY } 9$ Both Rutters down	49.					
	50.					
	51.					
Both Rutters up	52.					
	53.					
	54.					
DAY 10 Left up right Rutters down	55.					
	56.					
	57.					
Right up Left Rutters down	58.					
	59.					
	60.					
DAY 11	61.					
	62.					
	63.					
64.						
	65.					
	66.					
DAY 12 NEW PLANE	67.					
	68.					
	69.					
	70.					
	71.					

$$
P=14.7
$$

$$
1 / 2=0.5
$$

$$
D=
$$

$$
V=
$$

$$
\mathrm{g}=
$$

$$
\mathrm{h}=
$$

ExMAPYusion:

WHICH_PLANE_is_the_BEST? \qquad
Mass of the Plane = \qquad grams

Longest hangtime $=$ \qquad seconds

Longest distance flew = \qquad meters
** complete the flolowing calculations about your plane UNITS must be included to receive credit

$$
p=\text { density }=\frac{\text { mass }}{\text { volume }}=\frac{}{58.17 \mathrm{~cm}^{3}}=
$$

Here is your formila. Plug in your numbers for the best plane

$$
v_{f_{\text {final }}^{\text {velocity }}}=\frac{\text { dis tance }(\text { meters })}{\operatorname{time}(\sec \operatorname{nds})}=[\text { insert your numbers below }]
$$

$$
V_{\text {final }}=-----------=
$$

\qquad
\qquad $)(2.23)=$ \qquad
g
(9.8)

$$
\begin{aligned}
& +10 \text { Bernoulli's_Cons } \text { tant }=P+\frac{1}{2} \boldsymbol{p} \boldsymbol{v}^{2}+\boldsymbol{p g h} \\
& \text { YOU must include the formula and the numbers. Units are not needed for THIS problem only } \\
& =P+1 / 2 \\
& \text { p } \quad v^{2} \\
& + \\
& \text { D }
\end{aligned}
$$

